Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tópicos
Tipo del documento
Intervalo de año
1.
Viruses ; 14(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1580401

RESUMEN

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Asunto(s)
Adenoviridae/efectos de los fármacos , Antivirales/farmacología , Coronavirus/efectos de los fármacos , VIH-1/efectos de los fármacos , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Tiazoles/farmacología , Replicación Viral/efectos de los fármacos , Adenoviridae/fisiología , Antivirales/química , Línea Celular , Coronavirus/clasificación , Coronavirus/fisiología , Expresión Génica/efectos de los fármacos , VIH-1/fisiología , Humanos , Factores de Empalme de ARN/metabolismo , ARN Viral/metabolismo , Tiazoles/química
2.
Viruses ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1572666

RESUMEN

Gene therapy is currently in the public spotlight. Several gene therapy products, including oncolytic virus (OV), which predominantly replicates in and kills cancer cells, and COVID-19 vaccines have recently been commercialized. Recombinant adenoviruses, including replication-defective adenoviral vector and conditionally replicating adenovirus (CRA; oncolytic adenovirus), have been extensively studied and used in clinical trials for cancer and vaccines. Here, we review the biology of wild-type adenoviruses, the methodological principle for constructing recombinant adenoviruses, therapeutic applications of recombinant adenoviruses, and new technologies in pluripotent stem cell (PSC)-based regenerative medicine. Moreover, this article describes the technology platform for efficient construction of diverse "CRAs that can specifically target tumors with multiple factors" (m-CRAs). This technology allows for modification of four parts in the adenoviral E1 region and the subsequent insertion of a therapeutic gene and promoter to enhance cancer-specific viral replication (i.e., safety) as well as therapeutic effects. The screening study using the m-CRA technology successfully identified survivin-responsive m-CRA (Surv.m-CRA) as among the best m-CRAs, and clinical trials of Surv.m-CRA are underway for patients with cancer. This article also describes new recombinant adenovirus-based technologies for solving issues in PSC-based regenerative medicine.


Asunto(s)
Infecciones por Adenoviridae/virología , Adenoviridae/genética , Adenoviridae/fisiología , COVID-19/prevención & control , Terapia Genética , Animales , Vacunas contra la COVID-19 , Línea Celular Tumoral , Expresión Génica , Vectores Genéticos , Humanos , Inmunoterapia , Virus Oncolíticos/genética , Células Madre Pluripotentes , Regiones Promotoras Genéticas , SARS-CoV-2 , Survivin , Replicación Viral
3.
Viruses ; 13(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1287275

RESUMEN

The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.


Asunto(s)
Adenoviridae/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Metapneumovirus/fisiología , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Células A549 , Línea Celular , Quimiocinas/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HEK293 , Humanos , Quinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA